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We show the existence of local or global in time solutions for the non-homoge-
neous Boltzmann equation. This is done under the assumptions that initial data
are smaller than a suitable Maxwellian and that collisional cross-sections do not
satisfy Grad’s angular cutoff. Partial regularity in space-velocity of the solutions
constructed herein is also proved.
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1. INTRODUCTION

In this paper, we consider the Boltzmann equation which consists in
looking for a function f=f(t, x, v) , t ¥ R+ (or in (0, T), with T > 0
fixed), (x, v) ¥ R6, solution in a suitable sense of

3 “tf+v.Nxf=Q(f),

f|t=0=f0,
(B0)

denoted also hereafter by problem (B).
f0=f0(x, v) is a given initial datum and we assume in this paper that

it satisfies

m −M(0, x, v) [ f0(x, v) [ m+M(0, x, v), (1.1)



where 0 < m − [ m+ are given constants and

M(t, x, v)=
e −|v|2

`p
3

e −|x−tv|2

`p
3 . (1.2)

Let us mention here that the assumption m − > 0 is not necessary for the
existence results presented below, but it simplifies the regularity questions
dealt with. Very likely, it can be dispensed with in the homogeneous case.
But in this paper, we treat the non-homogeneous situation of the Boltz-
mann equation, that is when f does really depend on the variable x. The
Boltzmann operator Q which appears in (B) is given by (for functions
f=f(v))

Q(f)(v)=F
vg ¥ R

3
F
S2
w

B{f −gfŒ−ffg}, (1.3)

where fŒ=f(vŒ), f −g=f(v −g), f=f(v) and fg=f(vg). In turn, the so-
called post-collisional velocities vŒ and v −g are given in function of
(v, vg) ¥ R6 and w ¥ S2 as

vŒ=v+(vg −v, w) w, v −g=vg −(vg −v, w) w. (1.4)

The function B inside the operator Q is called the scattering cross-section
and it is of the form B=B(|v−vg |, |

v−vg
|v−vg|

.w|). The above setting is standard,
and is explained for instance in [ArBe, CIP, Vil].

Our aim is to show that there exists T > 0 so that problem (B) admits
weak solutions (to be defined below) in the class L1 5 L.((0, T)×R6

x, v), for
initial data satisfying (1.1), and this will hold true for any value of m+.

The above comparison assumption is classical, and we recall that the
function M is a special solution of (B) as Q(M)=0 and “tM+v.NxM=0.

Such studies already exist in the cutoff case, that is when (roughly
speaking) the function wQ B(., .) is in L1(S2). When this is the case, one
says that Grad’s cutoff assumption holds. Classical references are [ArBe,
Gou, Ham, IlSh, Lio].

In this work, we deal with the non cut-off case. As far as we know, we
are not aware of similar results, except for the papers [Ale1, AlVi], but
these ones deal only with so-called renormalised solutions.

Furthermore see for instance [Cer] the non cut-off case is relevant to
most physical cases.
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In this paper, we will consider two cases of singular cross sections B.
The first one is given by

˛
B(|v−vg |, cos h)=F(|v−vg |) b(cos h),

b −

|cos h|n
[ b(cos h) [

b+

|cos h|n
, h ¥ (−p/2,+p/2),

b − , b+ constants, n=
s+1
s−1

, 2 < s [ 5, and with c=
s−5
s−1

,

F(|v−vg |)=f |v−vg |c
1

1+q |v−vg |n
,

(H1)

Above q > 0 and f > 0 are fixed positive constants. Note that −3 < c [ 0
and 3

2 [ n < 3.
Let us comment on this assumption (H1). In view of [Cer], the case

q=0 corresponds to a pure power-law interaction between particles. For
other (more) physical types of interaction, maybe one gets something
like the behaviour in (H1). The fact that we assumed q > 0 will be used
explicitly in the next section, but we mention that it enables getting uniform
bounds. In particular, we get rid of moments of order strictly positive. In
some sense, the situation is similar to that of an operator of the type
−|v|c Dv see also the homogeneous framework of the Landau equation
[DeVi, Vil].

One can generalise assumption (H1) in many ways, but the key point
is to ask for F(|v−vg |) |v−vg |n to be bounded for large |v−vg |. One reason
for assuming such a behaviour is that we shall look for upper solutions of
(B) as b(t) M (for a suitable function b). In this way, quantities such as
>vg F(|v−vg |) |v−vg |nM(vg) enter naturally. Note also that c+n > 0 as
s > 2.

The second case of cross section B is given by

˛B(., .)=G(|vg −vŒ|)
|vŒ−v|n

, n=
s+1
s−1

, s > 2,

G ¥S(R), =0 for small values, > 0 otherwise.

(H2)

This kind of assumption has been introduced and explained in [Ale1] for
instance. The main advantage is that we can perform some PdO analysis.
We refer to Section 3 for more details.
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We also introduce for e > 0, the so-called Fokker–Planck Boltzmann
equation which we also study (only) in the case of assumption (H2). It
consists in the following

3 “tf+v.Nxf− eDvf=Q(f),

f|t=0=f0.
(Be)

Our main motivation for introducing such an academic model is only to
study in [Ale2] regularity questions, but of course it is of interest by itself,
see for instance [Ham, DiLi2].

Before stating our results, we need first to define our notion of solu-
tions of (Be).

Definition 1.1. Assume (H1) or (H2), and e \ 0. We say that, for
T > 0, possibly T=+., f \ 0 is a weak solution of (Be) if

˛f ¥ L.(0, T; L1 5 L.(R6)),

F
b

0
F
R

6
x, v

F
R

3
v1

F
S2
B(f −gfŒ−ffg) ln

f −gfŒ
ffg

<+., - finite b [ T,

|v|2 f ¥ L.(0, T; L1(R6)),

and for all h ¥ C.0 ([0, T[×R6),

F
[0, T[×R

6
f{−“th−v.Nxh− eDvh}=OQ(f); hP+F

R
6
f0h(0, x, v) dx dv,

where

OQ(f); hP — F
[0, T[×R

6
F
vg ¥ R

3
F
S2
w

B{f −gfŒ−ffg}{hŒ−h}

=F
[0, T[×R

6
F
vg ¥ R

3
F
S2
w

Bffg{hŒ−h}.

Remark 1.1. The fact that OQ(f); hP for (at least) such h as defined
above is meaningful will be explained in the next section but follows also
directly from [AlVi, Vil] for instance.

Definition 1.1 applies to both cases (H1) or (H2) of collisional cross
sections. But when (H2) holds, one can introduce a (apparently) stronger
notion of solution. This fact was already used partially in [Ale1] to define
renormalised solutions.
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Definition 1.2. Assume (H2). We say that, for T > 0, possibly
T=+., f \ 0 is a PdO solution of (Be) if

˛f ¥ L.(0, T; L1 5 L.(R6)),

F
b

0
F
R

6
x, v

F
R

3
vg

F
S2
B(f −gfŒ−ffg) ln

f −gfŒ
ffg

<+., - finite b [ T,

|v|2 f ¥ L.(0, T; L1(R6)),

and for all h ¥ C.0 ([0, T[×R6),

F
[0, T[×R

6
f{−“th−v.Nxh− eDvh}=OOQ(f); hPP+F

R
6
f0h(0, x, v) dx dv,

where

OOQ(f); hPP=OOQ1(f); hPP+OOQ2(f); hPP,

OOQ2(f); hPP=F
[0, T[×R

6
fh F

vg ¥ R
3
F
S2
w

B{f −g−fg}

and

OOQ1(f); hPP=−F
[0, T[×R

6
fag

t, x(v, Dv)(h),

where we used pdo notations, and ag
t, x(v, Dv) is the adjoint of the operator

with symbol at, x(v, t) given by

at, x(v, t)=F
R3
a

f(t, x, a+v) G̃(|a|) |aNt|n−1.

where G̃ denotes G multiplied by a power of |a|.

This concept is used for instance in [Ale1, 4] (but here we do not use
the renormalisation process considered therein). In particuliar, we will need
the full calculus of PdO from [Mar1, Mar2, Tay1, Tay2].

The main results of the paper are given by

Theorem 1.1. Assume (H1) and e=0. Then, for all m+ > 0, there
exists T ¥ R+g and two C1 functions d, b: [0, T]Q R+g, with d(0)=m −

and b(0)=m+, such that problem (B) admits a weak solution f satisfying

d(t) M(t, x, v) [ f(t, x, v) [ b(t) M(t, x, v).
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Theorem 1.2. Assume (H2) and e \ 0. Then

(i) For all m+ > 0, there exists T ¥ R+g, two C1 functions d, b: [0, T]
Q R+g, with d(0)=m − and b(0)=m+, such that problem (Be) admits a
weak solution f, which is also a PdO solution, satisfying

d(t) Me(t, x, v) [ f(t, x, v) [ b(t) Me(t, x, v),

where

Me(t, x, v)=
e −|v|2

A e −A
D |x−Bv|2

`pD3 ,

with

˛
A=A(t)=4et+1,

D1=D1(t)=
e

3
t3+1,

B=B(t)=

t
2
+

t
2
A(t)

A(t)

D=D(t)=4et 1 t
2
22+A(t).D1(t)

(ii) If s > 3, there exists a constant Cg > 0, such that if 0 <
m − [ m+ [ Cg, then (i) holds true with T=+..

The constant Cg above is denoted by c12, p in Section 3 and is displayed
therein.

In fact, a statement similar to Theorem 1.1 holds true also in the case
e > 0 (with assumption (H1)) as it will be clear from the next sections.
However, we only state (and prove) the result for e=0.

The last theorem gives a partial regularity result on these solutions.

Theorem 1.3. For e=0, the solutions constructed above satisfy

hf ¥ L2(0, T; H
n−1
2n (R6)

with n−1
2n =

1
s+1 , for all h ¥ C.0 (]0, T[×R6).

The paper is organised as follows. In Sections 2 and 3, we prove the
existence Theorems 1.1 and 1.2 respectively. Then, the regularity result is
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proven in the last Section 4. Let us note that this last result applies to both
situations, but in the case when one assumes the second hypothesis (H2),
one can bootstrap this regularity to improve it. As it involves a much more
difficult analysis, we refer to [Ale2].

As far as I know, this is the first regularity result for the non-homo-
geneous Boltzmann equation without cutoff, see also the works of Des-
villettes [Des1, 2, DeGo] for the homogeneous case.

We would like to point out that we have considered herein the case
where the initial data are bounded by Maxwellians, and our method of
proof consists in looking for upper or sub-solutions which are so-called
travelling Maxwellians. This explains why we have assumed q > 0 in
hypothesis (H1). Maybe, looking for upper or sub-solutions with an inverse
polynomial behaviour could help for the case q=0, see for instance
[ArBe] in the cutoff case.

Also, we do not consider herein such questions as unicity, further
regularity ... of solutions constructed above. We hope to get back on some
of these issues in [Ale2].

As a final remark, it follows from the proofs below that we can reverse
the order of presentation in Theorems 1.1 and 1.2.

More precisely, if T > 0 is fixed, we can construct weak solutions of
(B) on the time interval (0, T), if m+ is sufficiently small. This is a kind of
statement in use in the framework of non-linear pde, see for instance [Gou,
IlSc] in the case of Boltzmann equation with cutoff. We have chosen the
opposite presentation of our results, in the hope of showing the existence of
global in time solutions, for any value of m+. However, even if we have
failed in this direction, the solutions constructed herein are renormalised
solutions in the sense of [Ale1, AlVi], so that they continue to exist as such
for time bigger than T.

2. PROOF OF THEOREM 1.1

For the reader’s convenience, we divide it into two steps.
First Step: A cutoff problem

For n ¥Ng fixed, we want to solve the following cutoff problem

3 “tf+v.Nxf=Qn(f),

f|t=0=f0,
(2.1)

where Qn is the Boltzmann operator corresponding to the cross section

Bn=B1|cos h| \ 1
n
. (2.2)
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More precisely, we want to find T > 0, two C1 functions d, b: [0, T]Q R+g,
d(0)=m −, b(0)=m+, which do not depend on n, and such that problem
(2.1) admits a weak solution f(=fn) such that dM [ f [ bM.

We shall use ideas from [Gou, IlSc] in the cutoff case that we adapt
to our singular framework.

Note that we could apply (somehow directly) their results in order to
solve (2.1), but their constants do depend on n, and this is definitively
useless for our second step, which consists in sending n to +..

We shall explicitely display the parameter n on any constant iff it does
depend on it.

For any 0 < T [+., d and b given functions in C0
+([0, T]), and l a

fixed and given function satisfying

d(t) M [ l [ b(t) M, (2.3)

we introduce the following linear problem

˛“tg+v.Nxg=FF BnlŒl
−

g−FF Bnl
−

gg+g FF Bn(l
−

g−lg),

g|t=0=f0

(2.4)

Note that problem (2.4) writes also

˛“tg+v.Nxg=FF BnlŒl
−

g−FF Bnlgg,

g|t=0=f0

(2.5)

Notice that from [Gou] and assumption (H1), one has for all t ¥ [0, T]

FF Bnlg [ c1, n F
vg
F(|v−vg |) M(vg) [ c2, n

In fact, one has

0 [ FF Bnlg [ c3, n
1

(1+t2)
3+c
2

, -t ¥ [0, T]
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In the same way,

FF BnlŒl
−

g [ b
2(t) FF BnMŒM

−

g [ b
2(t) FF BnMMg

[ b2(t) M FF BnMg [ c4, n, T, -T > 0 fixed.

Finally

F
x
FF BnlŒl

−

g [ F
x
F
v
Mc5, n, T [ c6, n, T

These estimates show that for all T > 0 fixed, problem (2.5) admits a
unique solution g (in the mild and distributional sense) which is in
L1 5 L.((0, T)×R6

x, v) and \ 0.
Next, we look for an upper solution of problem (2.5) in the form

a — b(t) M. More precisely, we wish to find a sufficient condition on b for
this purpose, and so we first compute

“t[a−g]+v.Nx[a−g]

=−FF BnlŒl
−

g+FF Bnl
−

gg−g FF Bn(l
−

g−lg)+bŒ(t) M

=bŒ(t) M−FF BnlŒl
−

g+FF Bnl
−

gg−g FF Bn(l
−

g−lg)

=bŒ(t) M−FF BnlŒl
−

g+FF Bnl
−

gg+(a−g) FF Bn(l
−

g−lg)−a FF Bn(l
−

g−lg).

Since l [ a, one has

“t[a−g]+v.Nx[a−g]

\ bŒ(t) M−FF Bnl
−

gaŒ+FF Bnl
−

gg+(a−g) FF Bn(l
−

g−lg)−a FF Bn(l
−

g−lg)

\ bŒ(t)M−FF Bnl
−

g(aŒ−a)−FF Bnl
−

g(a−g)

+(a−g) FF Bn(l
−

g−lg)−a FF Bn(l
−

g−lg). (2.6)
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Since we want a to be an upper solution of problem (2.4), it is enough to
ask for b to satisfy

bŒ(t) M−FF Bnl
−

g(aŒ−a)−a FF Bn(l
−

g−lg) \ 0. (2.7)

In the following, we are led to look for b such that (b \ 0)

˛ bŒ(t)M \ FF Bnl
−

g(aŒ−a)+bM FF Bn(l
−

g−lg),

b(0) \ m+.

(2.8)

Firstly, from [ADVW, AlVi, Vil], one has

FF Bn(l
−

g−lg)=F
vg
Sn(|v−vg |) lgdvg, (2.9)

where

Sn(|v−vg |)=|S1| F
p

2

0
sin h r 1

cos3 1h
2
2
B̃n R |v−vg |

cos 1h
2
2
, cos hS

−B̃n(|v−vg |, cos h) dh, (2.10)

or

Sn(|v−vg |)

=|S1| F
p

2

0
sin h

1

cos3 1h
2
2 r B̃n R |v−vg |

cos 1h
2
2
, cos hS−B̃n(|v−vg |, cos h)s dh

+|S1| F
p

2

0
sin h r 1

cos3 1h
2
2
−1s B̃n(|v−vg |, cos h) dh. (2.11)

Above, we have denoted B̃n the cross section corresponding to the
s-representation, see for instance [Vil1, 2].

By the results of [ADVW, AlVi, Vil1, 2], one has (using assumption
(H1))

|Sn(|v−vg |)| [ c1 |v−vg |c (2.12)
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where c1 does not depend on n. It follows using [Gou] that

F
vg
Sn(|v−vg |) lgdvg [ b(t) c2

1
(1+t)3+c (2.13)

In conclusion, it is enough to choose b \ 0 such that

˛ bŒ(t) M \ FF Bnl
−

g(aŒ−a)+b2(t) Mc2
1

(1+t)3+c ,

b(0) \ m+.

(2.14)

There remains to analyse the most difficult term >> Bnl
−

g(aŒ−a). We
compute it as follows

FF Bnl
−

g(aŒ−a)

=f FF |v−vg |c
1

1+q |v−vg |n
1

:1 v−vg
|v−vg |

, w2:
n
1|cos h| \ 1

n
l −g(aŒ−a)

=f FF |v−vg |c
|v−vg |n

1+q |v−vg |n
1

|vŒ−v|n
1|cos h| \ 1

n
l −g(aŒ−a)

=f FF |v−vg |c+n
1

1+q |v−vg |n
1

|vŒ−v|n
1|cos h| \ 1

n
l −g(aŒ−a)

=f FF |vŒ−vg |c+n
1

1+q |v−vg |n
1

|vŒ−v|n
1|cos h| \ 1

n
l −g(aŒ−a)

+f FF [|v−vg |c+n−|vg −vŒ|c+n]
1

1+q |v−vg |n
1

|vŒ−v|n
1|cos h| \ 1

n
l −g(aŒ−a)

=I+II. (2.15)

Note that the bracket term inside II is positive. Furthermore,

II [ f FF [|v−vg |c+n−|vg −vŒ|c+n]
1

|vŒ−v|n
l −gaŒ

[ b2(t) Mc3 F
vg
|v−vg |cMg

Some Solutions of the Boltzmann Equation Without Angular Cutoff 337



by the computations made in [Ale3]. Finally,

II [ b2(t) Mc4
1

(1+t)3+c . (2.16)

Next, we deal with I. Using the same computations done in [Ale3], and as

|v−vg |n=[|vg −vŒ|2+|vŒ−v|2]
n

2 \ |vg −vŒ|n

one has successively, using the Carlemann’s transform

I=b(t) f F
R

3
h

dh
|h|n+2 F

E0, h

|a|c+n

1+q{|a|2+|h|2}
n

2

1.l
−

g(MŒ−M)

where MŒ=M(v−h) and M=M(v), E0, h denotes the hyperplane ortho-
gonal to h and containing 0. If we let M̄Œ=M(v+h), M −

g=M(a+v),
Mg=M(a+v−h), M̄g=M(a+v+h), one has

I=b(t) f F
R

3
h

dh
|h|n+2 F

E0, h

|a|c+n

1+q{|a|2+|h|2}
n

2

1.l
−

g(MŒ+M̄Œ−2M)

[ b2(t) c5 F
R

3
h

dh
|h|n+2 1MŒ+M̄Œ \ 2M F

E0, h

k(|a|) M −

g(MŒ+M̄Œ−2M).

Since MŒM −

g=MMg and M̄ŒM̄ −

g=MM̄g, we obtain finally

I [ b2(t) c5M F
R

3
h

dh
|h|n+2
:F

E0, h

k(|a|){Mg+M̄g −2M −

g} da: , (2.17)

where

k(|a|)=
|a|c+n

1+q |a|n

Denote by C the term inside the | . | in inequality (2.17). Then if M̂ denotes
the Fourier transform of M with respect to the variable v, one has

C=c6 F
E0, h

dak(|a|) F
R

3
dtM̂(t) e it.(a+v) sin2 1t.h

2
2 . (2.18)
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Next, consider for a, h ] 0 fixed

D=F
R

3
dtM̂(t) e it.(a+v) sin2 1t.h

2
2

=F
R

3
dt F

R
3
dkM(k) e −ik.te it.(a+v) sin2 1t.h

2
2 . (2.19)

We use an orthonormal basis of R3 with first vector h
|h| and express (2.19) as

D=F
R

3
dt 3F

R
2
k | 2, 3

M2D(k | 2, 3) e −ik.t | 2, 34 e it.(a+v) | 2, 3

×F
R

1
k | 1

M1D(k1) e −ik1t1e it1v1 sin2 1 |h| t1
2
2 ,

wherek=(ki),t=(ti),k.t |2, 3=k2t2+k3t3...M(k)=M1D(k1) M2D(k|2, 3),
M1D or M2D denoting the corresponding Maxwellian in 1 or 2 dimensions.
At the end, we obtain

D=M2D((a+v) | 2, 3) F
t1

M̂1D(t1) e it1v1 sin2 1 |h| t1
2
2

=e −|a+S(h) v|2e −|S(h) x−t(a+S(h) v)|2 F
t1

M̂1D(t1) e it1v1 sin2 1 |h| t1
2
2 (2.20)

Above S(h) denotes the orthogonal projection over E0, h. Getting back to C
given by (2.18), we obtain

C=c7 3F
E0, h

dak(|a|) e −|a+S(h) v|2e −|S(h) x−t(a+S(h) v)|24

×F
t1

M̂1D
1D(t1) e

it1v1 sin2 1 |h| t1
2
2

and thus

|C| [ c8 :F
t1

M̂1D
1D(t1) e

it1v1 sin2 1 |h| t1
2
2: (2.21)
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in view of the form of k and assumption (H1). Next, we compute crudely
as

:F
t1

M̂1D
1D(t1) e

it1v1 sin21 |h| t1
2
2:

[ c9 F
t1

1
(1+t)1/2 e

− 1

4(1+t2)
|t1|

2
sin2 1 |h| t1

2
2 . (2.22)

If |h| [ 1, we bound this as follows

:F
t1

M̂1D
1D(t1) e

it1v1 sin2 1 |h| t1
2
2:

[
c9

(1+t2)1/2 |h|
2 F
t1

e − 1

4(1+t2)
|t1|

2
|t1 |2

[ c10 |h|2 (1+t2). (2.23)

If |h| \ 1, we bound |sin| by 1 to get

:F
t1

M̂1D
1D(t1) e

it1v1 sin2 1 |h| t1
2
2: [ c11. (2.24)

Getting back to (2.17), one obtains

I [ b2(t) Mc12(1+t2). (2.25)

Gluing all the above estimates and getting back to (2.8), we are led to
choose b such that

3 bŒ(t) \ b
2(t) c13(1+t2),

b(0) \ m+
(2.26)

One may choose b solution of

3 bŒ(t)=b
2(t) c13(1+t2),

b(0)=m+
(2.27)

which is given by

b(t)=
1

1
m+ −c13(t+t3/3)

. (2.28)
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Therefore, if we choose any T > 0 such that 1
m+−c13(T+T3/3) > 0, one

obtains an upper solution of problem (2.5) for t ¥ [0, T] in the form bM.
Note that our choice of T and b does not depend on n and this was our

main purpose for the computations above. Also we have choosen T such
that b(T) <+..

Once we get at this point, looking for a lower solution in the form
d(t)M on the same time interval [0, T] is classical, one may also look over
to the proof of Theorem 2, given in Section 3. Clearly, we can choose such
d independent from n.

In conclusion, we have therefore achieved the following.
There exists T > 0 and b, d C1 functions from [0, T] in R+g,

b(0)=m+, d(0)=m −, which do not depend on n, such that for all

l ¥ L1 5 L.((0, T)×R6
x, v), dM [ l [ bM,

problem (2.5) has a unique solution g such that

dM [ g [ bM.

By a classical fixed point argument displayed for instance in [Gou], we can
assert that there exists gn solution of the following Boltzmann equation
with cutoff

3 “tgn+v.Nxgn=Qn(gn),

gn |t=0=f0,
(2.29)

on the time interval [0, T], such that dM [ gn [ bM, where T, d and b are
as above, not depending on n.

Furthermore, gn satisfies the following uniform entropic dissipation
rate bound estimate

F
T

0
F
R

6
F
R

3
vg

Bn{g
−

ng
−

ng−gngn*} ln
g −ng

−

ng

gngng
[ CT, (2.30)

as it is clear by multiplying (2.29) by ln gn.
Second Step: sending n to +.

From (2.30) and the (uniform in n) L. bound on gn, one deduces that

F
T

0
F
R

6
x, v

F
R

3
vg

F
S2
w

Bn{g
−

ng
−

ng−gngng}2 [ CT
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This is enough to apply the results and the arguments quoted in [ADVW,
AlVi]. In particular, there exists f ¥ L1 5 L., dM [ f [ bM such that (for
a suitable sub-sequence)

gn Q f in Lp((0, T)×R6
x, v)

strongly (1 [ p <+.). Writing the distributional formulation associated
to (2.29) (as in Definition 1.1), it follows, by the arguments quoted for
instance in [AlVi], that f is a weak solution in the sense of Definition 1.1.
Note that Q(f) as defined there satisfies

Q(f) ¥ L2((0, T)×R3
x; H

− n−1
2 (R3

v)). (2.31)

Indeed for all h ¥ L2((0, T)×R3
x; C

.

c (R
3
v))

|OQ(f); hP|=:FT

0
F
R

6
F
R

3
vg

F
S2
w

B{fŒf −g−ffg}{hŒ−h}:

[ 3F B |fŒf −g−ffg |24
1/2 3F B |hŒ−h|24

1/2

[ CT ||h||L2((0, T)×R
3
x; H

n−1
2 (R3

v))
,

as follows from the facts that, on one hand, f is in L. and satisfies the
entropic dissipation rate bound in Definition 1.1, and on the other hand by
a direct Fourier analysis, using the fact that B.|v−vg |c [ c |cos h| − n.

This ends the proof of Theorem 1.

Remark 2.1. Note that (2.31) holds true also in case of assumption
(H2).

3. PROOF OF THEOREM 1.2

As in the proof of Theorem 1.1, and with the same motivation (non
dependence from the parameter n), the main step consists in solving the
following problem, where e \ 0 and n \ 1

3“tg+v.Nxg− eDvg=Qn(g)

g|t=0=f0

(Be, n)

Since we are using some results from [Ham], we assume that

m −M(0, x, v) [ f0(x, v) [ m+M(0, x, v) (3.1)
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with 0 < m − [ m+ and

M(t, x, v)=
e −|v|2

p
3
2

e −|x−tv|2

p
3
2

. (3.2)

The operator Qn is a Boltzmann cutoff type operator corresponding to the
kernel Bn given by

Bn=
G(|vg −vŒ|)
|vŒ−v|n

1 |vŒ−v|
|vg−vŒ| \ 1/n. (3.3)

Note that from [Ale1,3], Bn does depend on the usual arguments for a
cross section.

We shall first consider the case e > 0.
In the following, we shall display the parameters e or n on the constants

iff they do depend on them.
Denote by g(t, x, v) — Fe(t) f0(x, v) the solution of

3“tg+v.Nxg− eDvg=0

g|t=0=f0

(3.4)

Then, it is shown in [Ham] that one has the following

0 [ Fe(t) f0(x, v) [ m+Fe(t) M(0, x, v). (3.5)

If we set

Me=Me(t, x, v)=Fe(t) M(0, x, v), (3.6)

then

Me(t, x, v)=
e −|v|2

A e −A
D |x−Bv|2

`pD3 , (3.7)

with

˛
A=A(t)=4et+1,

D1=D1(t)=
e

3
t3+1,

B=B(t)=

t
2
+

t
2
A(t)

A(t)

D=D(t)=4et 1 t
2
22+A(t).D1(t)

(3.9)

Some Solutions of the Boltzmann Equation Without Angular Cutoff 343



Note that -(t, x, v) ¥ R+×R6, when eQ 0, then the above quantities go
to 1, except for B which goes to t.

Next, let us give T > 0, two positive C1 functions d and b from [0, T]
to R+g, and for all l: (0, T)×R6 Q R, such that

d(t) Me [ l [ b(t) Me, (3.10)

we consider the following linear problem

˛ “tf+v.Nxf− eDvf= FF Bn(l
−

glŒ−flg)

f|t=0=f0

(3.11)

that we also write as

˛ “tf+v.Nxf− eDvf=FF Bnl
−

g(lŒ−f)+f FF Bn(l
−

g−lg)

f|t=0=f0

(3.12)

Now we are going to specify T, b and d such that b(t) Me and d(t) Me

are respectively upper and lower solutions of problem (3.12).
The main point is that we want T, b and d independent from e and n.
We begin with the upper one. Since

“tMe+v.NxMe− eDvMe=0

if we set

f̂=b(t) Me, (3.13)

we look for f̂ such that

“tf̂+v.Nxf̂− eDvf̂ \ FF Bnl
−

g(lŒ−f̂)+f̂ FF Bn(l
−

g−lg), (3.14)

and thus we are looking for b such that

bŒ(t) Me \ b(t) FF Bnl
−

g(M
−

e−Me)+b(t) Me FF Bn(l
−

g−lg). (3.15)

We shall work on each two terms on the right hand side of (3.15) and we
first begin with the first one, that is >> Bn(l

−

g−lg). Using the same compu-
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tations as in [Ale3], if E0, h denotes the hyperplane through 0 and
orthogonal to h, then (using polar coordinates for h=rw)

FF Bn(l
−

g−lg)

=F
R

3
h

dh
|h|n+2 F

E0, h

1|h| \ 1
n |a| ×{2l(a+v)−l(a+v+h)−l(a+v−h)} G(|a|)

=F
R

3
a

F
S2
w

dw da.w=0 F
+.

1
n |a|

1
rn
G(|a|)×{2l(a+v)−l(a+v+h)−l(a+v−h)}

=F
R

3
a

F
S2
w

G(|a|) F
R

3
t

l̂(t) e it.(a+v)×F
+.

1
n |a|

2−e −irt.w−e irt.w

rn
dr

=F
R

3
a

F
S2
w

G(|a|) F
R

3
t

F
R

3
k

l(k) e −it.ke it.(a+v)×F
+.

1
n |a|

sin2 1 r |t.w|
2
2 dr
rn

=F
R

3
k

l(k) 5F
R

3
t

e −it.(k−v) F
R

3
a

G(|a|) 3F
S2
w, w.a=0

F
+.

1
n |a|

sin2 1 r |t.w|
2
2 dr
rn
4 e it.a6

=F
R

3
k

l(k) 5F
R

3
t

e −it.(k−v)I6

with

I=F
R

3
a

G(|a|) 3F
S2
w, w.a=0

F
+.

1
n |a|

sin2 1 r |t.w|
2
2 dr
rn
4 e it.a.

Let us analyse I. For |t| ] 0, one has (where S(a) denotes the orthogonal
projection over E0, a)

I=F
R

3
a

G(|a|) e it.a F
S2
w, w.a=0

|t.w|n−1 F
+.

1
n |a| |t.w|

sin2 1 r
2
2 dr
rn

=F
R

3
a

G(|a|) F
S2
w, w.a=0

|S(a) t.w|n−1 F
+.

1
n |a| |S(a) t.w|

sin2 1 r
2
2 dr
rn

e it.a

=G̃(|a|) F
S2
w, w.a=0

||a| |S(a) t.w||n−1 F
+.

1
n |a| |S(a) t.w|

sin2 1 r
2
2 dr
rn

e it.a,

where G̃ denotes G multiplied by a power of |a|.
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Let

kn(|a| |S(a) t.w|)=kn(|t| |S(t) a|)

=F
S2
w, w.a=0

||a| |S(a)t.w||n−1 F
+.

1
n |a| |S(a) t.w|

sin2 1 r
2
2 dr
rn
.

Then, using an orthonormal basis with first vector t|t| , we get

I=F
R3
a

G̃(|a|) kn(|t|{a
2
2+a

2
3}

1
2) e i |t| a1,

where a=(ai). Noticing that

|kn(|t| {a
2
2+a

2
3}

1
2)| [ |a|n−1 |t|n−1,

one deduces that I is rapidly decreasing in |t|. In particular, there exists a
constant c1 (independent of n) such that

:FF Bn(l
−

g−lg): [ c1 F
R

3
k

|l(k)| dk, (3.16)

and since l [ bMe, one has

:FF Bn(l
−

g−lg): [ c2b(t) F
R

3
k

Me(k) dk. (3.17)

In view of this, we need to estimate

A — F
R

3
w

Me(w) dw.

By definition, one has the following computations

A=
1

(pD)3/2 F
R

3
w

e
−|w|2

A e −A
D |x−Bv|2=

1
(mD)3/2 e

−[A
D− 1

m

A2B2

D2 ] |x|2

where

m=
1
A
+
AB2

D
.

Note that A
D−

1
m

A2B2

D2 \ 0 and that mD \ 2t2.
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After some easy (but long) computations, it follows that

A [ c3
1

(1+t)3 , (3.18)

where c3 does not depend on n nor on e by our notation’s convention.
In conclusion, we have obtained

b(t) Me FF Bn(l
−

g−lg) [ b2(t) Mec4
1

(1+t)3 , (3.19)

which is the second term on the right hand side of (3.15). There remains to
estimate the first one, that is b(t) >> Bnl

−

g(M
−

e−Me).
For notations convenience, we omit the lower index e below in Me

(that is we let for a while M=Me). Let also B=>> Bnl
−

g(MŒ−M). Using
Carleman’s representation, one has

B=F
R

3
h

dh
|h|n+2 F

E0, h

1|h| \ 1
n |a|{M(v−h)+M(v+h)−2M(v)} G(|a|) l(a+v)

[ F
R

3
h

dh
|h|n+2 1M(v−h)+M(v+h) \ 2M(v)

×F
E0, h

{M(v−h)+M(v+h)−2M(v)} G(|a|) l(a+v).

Let M=M(v), MŒ=M(v−h), M̄Œ=M(v+h), M −

g=M(a+v), Mg=
M(a+v−h), M̄g=M(a+v+h). Then

B [ b(t) F
R

3
h

dh
|h|n+2 1MŒ+M̄Œ \ 2M F

E0, h

{MŒ+M̄Œ−2M}M −

gG(|a|).

Since MŒM −

g=MMg , M̄ŒM −

g=MM̄g, one gets

B [ b(t) F
R

3
h

dh
|h|n+2 1MŒ+M̄Œ \ 2M F

E0, h

G(|a|){MgM+M̄gM−2MM −

g}

[ b(t) M F
R

3
h

dh
|h|n+2
:F

E0, h

daG(|a|){Mg+M̄g −2M −

g}:
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[ b(t) M F
R

3
h

dh
|h|n+2
:F

E0, h

daG(|a|) F
R

3
t

M̂(t) e it.ae it.v{2−e it.h−e −it.h}:

[ b(t) M F
R

3
h

dh
|h|n+2
:F
R

3
t

M̂(t){2−e it.h−e −it.h} Ĝ(|S(h)t|):

[ b(t) M F
S2
w

F
R

3
t

|M̂(t)| |Ĝ(|S(h)t|)| |w.t|n−1 dt

[ b(t) M F
R

3
t

|M̂(t)| 5F
S2
w

|Ĝ(|S(h)t|)| |w.t|n−16 . (3.20)

Above, Ĝ denotes the 2D Fourier transform of G. Denote by C the term in
brackets in (3.20). For |t| ] 0, one has

C=|t|n−1 F
S2
w

|Ĝ 1 |t|=1− :w. t
|t|
:22 :w. t

|t|
:n−1

[ c5 |t|n−1 F
p

2

0
sin h |Ĝ(|t| sin h)| (cos h)n−1 dh,

using the usual polar coordinates. Since G is in S, one deduces that for all
0 [ p < 1, one has

|t|1+p F
p

2

0
sin h |Ĝ(|t| sin h)| (cos h)n−1 dh

=F
p

2

0
|t| sin h |Ĝ(|t| sin h)| |t|p (sin h)p (cos h)

n−1

(sin h)p dh

[ c6, p

In conclusion

b(t) FF Bnl
−

g(MŒe−Me) [ c7, pb(t) Me F
R

3
t

|M̂e |
|t|n−1

(1+|t|)1+p dt, (3.21)

for all 0 [ p < 1. By computations, one has

|M̂e |=
1

(mD)3/2 e
−[A

D − 1
m

A2B2

D2 ] |x|2e − 1
4m |t|

2
.
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Note that

|t|n−1

(1+|t|)1+p [
1

|t|2− n+p ,

this being integrable near 0 for 2− n+p < 3, and this is the case since
−1 < 2− n < 1 and 0 [ p < 1. For the moment, one can simply take p=0.
Next

F
R

3
t

|M̂e |
|t|n−1

(1+|t|)1+p dt [ F
R

3
t

|M̂e | |t|n−2−p

[
1

(mD)3/2 e
−[A

D− 1
m

A2B2

D2 ] |x|2 F
R

3
t

e −1
4 | t
`m
|2 |t|n−2−p

[ c8, p
1

(1+t)2− n+p

by choosing p near 1 so that 2− n+p > 0. Once again, c8, p is independent
from e or n.

Note that one can allow any value of s > 2.
In conclusion, we have obtained

b(t) FF Bnl
−

g(M
−

e−Me) [ C9, pb
2(t) Me
1 1
1+t
22− n+p

. (3.22)

Getting back to (3.15), we are led to choose b(t) (with b(0) \ m+) such
that

bŒ(t) \ C9, pb
2(t) 1 1

1+t
22− n+p

+c4b2(t) 1 1
1+t
23, (3.23)

where again p is chosen so that 2− n+p > 0. Therefore, this reduces to
choose b such that (recall that 2− n+p < 2)

bŒ(t) \ C10, pb
2(t) 1 1

1+t
22− n+p

. (3.24)

At this point, let us first show how to get local solutions for any value of
s > 2.

First, choose p=0 and as −1 < 2− n < 1, we are led to choose b such
that (for a suitable constant c10)

˛ b‘(t) \ C10b
2(t) 1 1

1+t
22− n

b(0) \ m+

. (3.25)
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It is enough to choose b as the (local) solution of

˛ bŒ(t)=C10b
2(t) 1 1

1+t
22− n

b(0)=m+

. (3.26)

We find, for a suitable constant c11 that

b(t)=
1

1
m+ −c11{(1+t)n−1−1}

. (3.27)

Note that 0 < n−1 < 2. This gives us local upper solutions, for all m+ \ 0,
up to the time

Tmax=3
1

m+c11
+14

1
n−1

and we choose any T, 0 < T < Tmax, and b given by (3.27). Note that this
choice does not depend on e nor on n.

To get global upper solutions, we get back to (3.24), with the choice
p ] 0, p near 1 so that 2− n+p > 0. Then, we choose b such that
(b(0)=m+)

b(t)=
1

1
m+ −c11, p+c11, p(1+t)n−p−1

.

Note that for s > 3, one has n−p−1 < 0. Therefore, we get global upper
solutions for any m+ such that

m+ [ C12, p —
1

c11, p
. (3.28)

Next, we look for a lower solution of the form ĝ=d(t) Me, knowing that
l \ d(t) Me. We are led to look for d such that

dŒ(t)Me [ d FF Bnl
−

g(MŒe−Me)+dMe FF Bn(l
−

g−lg),

350 Alexandre



and classical arguments show that it is enough to choose d such that

3dŒ(t) [ −c10, pb(t) d(t)(1+t) −2+n−p,

d(t) [ m −
(3.30)

in the case s > 3 or if s > 2 (and p=0)

3dŒ(t) [ −c10b(t) d(t)(1+t) −2+n,

d(t) [ m −
(3.31)

We can choose d as solution of (3.30) or (3.31) with equality, and thus we
obtain global (resp. local) sub solutions, which do not depend on e nor on n.

By classical fixed point arguments, we may arrange for the following and
in any case:

for all 0 < m − [ m+, for T > 0, d, b: [0, T]Q R+g, with d(0)=m −,
b(0)=m+, constructed above (independent from e and n), problem (Be, n)
admits a weak solution (that is in the sense of definition 1.1 with B
replaced by Bn) gn satisfying

dMe [ gn [ bMe. (3.32)

If s > 3, and m+ [ c12, p, one can take T=+. as shown above.
Furthermore, one can also manage to get (recall that we assumed

e > 0) eNv `g n bounded (uniformly with respect to n) in L2((0, T)×R6) (if
T=+., locally in time).

To see this, recall that we have obtained gn as a fixed point of the map
which sends l ¥ [dMe, bMe] to f ¥ [dMe, bMe], f solution of (3.12).
Multiplying (using cutoff function in velocity) (3.12) by ln f, one obtains,
for ae t

F f(t) ln f(t) dx dv+e F |Nv `f |2 dx dv= F Bn(l
−

g lŒ−flg) ln f

and this identity is certainly true for any fixed point of the map lQ f. Thus
replacing l and f above by gn and using usual manipulations on the colli-
sion operator leads to the claim.

We can now end the proof in the case e > 0:
this is immediate from the arguments of [Lio2], so that we can extract

a sub-sequence gn such that (1 [ p <+.)

gn Q f in Lp((0, T)×R6) strongly, (3.33)
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when nQ+., and we obtain that f is a weak solution of (Be) in the sense
of Definition 1.1, by passing to the limit in the weak formulation associated
with (Be, n).

There remains to prove that f is also a PdO solution in the sense of
Definition 1.2. But this follows from the corresponding formulation of
(Be, n), see for instance [Ale1, 4].

There remains to show the case e=0.
There are (at least) two ways to perform this case. One consists in

repeating the above process with e=0. In fact most of the above computa-
tions are true in this case, except for the final argument we used to pass to
the limit with n. The second way is a little more painless, and consists in
passing to the limit when eQ 0 with the solutions constructed above. In
any case, one needs an extra argument of compactness. We will follow the
second way and only detail the case of local solutions.

Firstly, recall from above that for all 0 < m − [ m+, for all e > 0, we
have constructed 0 < T <+., d, b: [0, T]Q R+g C1 functions, and this
independently from e, such that problem (Be) admits a weak solution f e in
the sense of definition 1.1, and such that dMe [ f e [ bMe.

We will show the strong compactness of f e in any Lp((0, T)×R6) and
this will be enough to conclude the proof in the case e=0, see [ADVW,
AlVi, Lio2, Lio3].

Some parts below are extracted from our papers.
Obviously, f e is bounded (uniformly wrt e) in L.(0, T; L1 5 L.(R6))

and any weak limit value will satisfy dM [ f [ bM.
Next, by Definition 1.1, since f e has a dissipation rate bounded uni-

formly wrt e, it follows (C is any constant independent from e) using the
notation g=f e

F
T

0
F
x
F
v
F
vg
F
w

B |gŒg −g−ggg |2 [ CT. (3.34)

Next, we write first

|gŒg −g−ggg |2=(gggŒ−gg −g)
2+(gŒ2−g2)(g −2g −g2

g). (3.35)

and we consider the estimate (3.34) involving the second term in (3.35). We
claim that it is bounded. By the usual change of variables, this is equivalent
to show that

:FT

0
F
x
F
v
F
vg
F
w

Bg2(g2−
g −g2

g): [ C. (3.36)
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Indeed, letting B for the l.h.s of (3.36), one has first

B [ F
t, x

(supv g2) F
v

:F
vg
F
w

B(g2−
g −g2

g): , (3.37)

and as >vg >w B(g
2−
g −g2

g) is of the same form as considered earlier (see (3.17)
for l), it follows B [ C ||g2||L1

t, x, v
. In view of this estimate, of (3.34) and

(3.35), one deduces

F
T

0
F
x
F
v
F
vg
F
w

B |gggŒ−gg −g|
2 [ CT. (3.38)

Next, we use the Carleman’s representation to get from this

F
T

0
F
x
F
v
F
h

dh
|h|n+2 F

E0, h

Ḡ(|a|){g(a+v−h) g(v−h)−g(a+v) g(v)}2 [ C, (3.39)

where Ḡ denotes G multiplied by a power of |a|. Setting

j(z, a)=g(a+z) g(z), (3.40)

and using the Parseval’s relation with respect to the variable v, one gets

F
T

0
F
x
F
h

dh
|h|n+2 F

E0, h

Ḡ(|a|) F
k
| ĵ1(k, a)|2 |e −ih.k−1|2 [ C, (3.41)

( ĵ1 denotes the F-transform w.r.t to the variable z) that is also

F
T

0
F
x
F
S2
w

F
E0, w

Ḡ(|a|) F
k
| ĵ1(k, a)|2 |k.w|n−1 [ C, (3.42)

or, using previous notations

F
T

0
F
x
F
a

Ḡ(|a|) F
k
| ĵ1(k, a)|2 |S(a).k|n−1 [ C. (3.43)

We claim that

F
T

0
F
x
F
k

5 F
a

Ḡ(|a|) | ĵ1(k, a)| |k|
n−1
2 62 [ C. (3.44)
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Indeed, letting A for the left hand side of (3.44), one has

A=F
T

0
F
x
F
k

5F
a

Ḡ(|a|) | ĵ1(k, a)| |S(a).k|
n−1
2 .

|k|
n−1
2

|S(a).k|
n−1
2

62,

which, using Cauchy–Schwarz inequality with respect to the variable a
gives

A [ F
T

0
F
x
F
k

3F
a

Ḡ(|a|) | ĵ1(k, a)|2 |S(a).k|n−14

×3F
a

Ḡ(|a|)
|k|n−1

|S(a).k|n−1
4 . (3.45)

But

F
a

Ḡ(|a|)
|k|n−1

|S(a).k|n−1=F
a

Ḡ(|a|)
1

|S(k).a|n−1 [ C,

by assumptions on G (note also that 0 < n−1 < 2). Therefore, it follows
that

A [ C F
T

0
F
x
F
k
F
a

Ḡ(|a|) | ĵ1(k, a)|2 |S(a).k|n−1, (3.46)

and the right hand side of (3.46) is bounded in view of (3.43), leading to
(3.44). From this, it follows

F
T

0
F
x
F
k
|k|n−1 :F

a

Ḡ(|a|) ĵ1(k, a):
2

[ C. (3.47)

Note that | ĵ1(k, a)| is up to dilatation in a the modulus of the Wigner
transform of g (and thus bounded in L2

k, a 5 L.k, a).
Finally, we have obtained that (f e * vG̃) f e belongs to a bounded

(wrt e) set of L2((0, T)×R3
x; H

n−1
2 (R3

v)).
At this point, again the arguments of Lions [Lio1, 2, 3] apply to the

sequence f e, and there exists f, dM [ f [ bM, such that, up to a sub-
sequence (1 [ p <+.)

f eQ f strongly in Lp((0, T)×R6)

Remark 3.1. One can also use the lower bound on f e to deduce
compactness wrt variable v, as in [Vil2], instead of the above argument.

354 Alexandre



4. PROOF OF THEOREM 1.3

Since f is a weak solution in the sense of Definition 1.1, more
precisely as it satisfies the entropic dissipation rate bound, and as it is
bounded below and above by a Maxwellian, it follows from [ADVW,
Vil1, 2], that one has for all h ¥ C.c ((0, T)×R6

x, v)

hf ¥ L2((0, T)×R3
x; H

n−1
2 (R3

v)). (4.1)

In the following, set F=hf. Then it satisfies

“tF+v.NxF=hQ(f)+f[“th+v.Nxh].

By the entropy inequality, see Section 2 or 3, it follows also that

hQ(f) ¥ L2((0, T)×R3
x; H

−(n−1)
2 (R3

v)). (4.2)

Let p=n−1. If .̂ denotes the Fourier transform with respect to the
variables (x, v) and (t, m) the dual variables, then letting G=hQ(f),
H=f[“th+v.Nxh], one has

“tF̂−t.NmF̂=Ĝ+Ĥ. (4.3)

By (4.2) and (4.1), we can write

Ĝ+Ĥ=ĝ1+|m|p/2 ĝ2, (4.4)

where gi belong to L2. On each side of (4.3),we add |m|p F̂ to get

“tF̂−t.NmF̂+|m|p F̂=ĝ1+|m|p/2 ĝ2+|m|p F̂. (4.5)

By (4.1) |m|p/2 F̂ ¥ L2. Therefore, one may write

“tF̂−t.NmF̂+|m|p F̂=ĝ3+|m|p/2 ĝ4, (4.6)

where gi ¥ L2.
At this point, one can proceed as in [Per] to get

“t |F̂|2−t.Nm |F̂|2+|m|p |F̂|2 [ |F̂ĝ3 |+|m|p |F̂|2+|ĝ4 |2, (4.7)

and thus

|F̂(t, t, m)|2 [ |F̂0(t, m+tt)|2+ F
t

0
(|F̂ĝ3 |+|ĝ4 |2)(t, m+st, t− s) ds. (4.8)
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Fix r \ 0 and D \ 0. Then

F
T

0
dt F

R
3
m

|t| r |F̂(t, t, m)|2

[ F
T

0
dt F

|m| \ D
|t| r |F̂(t, t, m)|2+ F

T

0
dt F

|m| [ D
|t| r |F̂(t, t, m)|2

[ F
T

0
dt F

|m| \ D
|t| r |F̂(t, t, m)|2+ F

T

0
dt F

|m| [ D
|t| r |F̂0(t, m+tt)|2

+F
T

0
dt F

|m| [ D
F

t

0
(|F̂ĝ3 |+|ĝ4 |2)(t, m+st, t− s) ds

— I+II+III. (4.9)

One has

II=F
T

0
dt F

|m| [ D
|t| r |F̂0(t, m+tt)|2

=F
T

0
dt F

|m−tt| [ D
|t| r |F̂0(t, m)|2

[ F
T

0
dt F

R
3
m

1|t− |m|
|t|| [ D

|t|
|F̂0(t, m)|2

[ |t| r−1 D F
R

3
m

|F̂0(t, m)|2. (4.10)

In the same way, one gets

III [ |t| r−1 D F
R

3
m×(0, T)

(|F̂ĝ3 |+|ĝ4 |2)(s, t, m) ds dm. (4.11)

In conclusion, one obtains

F
T

0
F
R

3
m

|t| r |F̂(t, t, m)|2 dt dm

[ |t| r−1 DA+ F
T

0
F
|m| \ D

|F̂|2 dm dt, (4.12)
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where

A=F
R

3
m

|F̂0(t, m)|2+F
R

3
m×(0, T)

(|F̂ĝ3 |+|ĝ4 |2)(s, t, m) ds dm.

Next, since

F
T

0
F
R

3
m

|t| r |F̂(t, t, m)|2 dt dm

[ |t| r−1 DA+
|t| r

Dp F
T

0
F
R

3
m

|m|p |F̂|2 dt dm, (4.13)

by arguments from [Per], choosing D=|t|
1

1+p and r= p
1+p , we get

F
T

0
F
R

3
m

|t| r |F̂(t, t, m)|2 dt dm [ C. (4.14)

Noticing that r=n−1
n =

2
s+1 , we have obtained finally that

hf ¥ L2(0, T; H
1

s+1 (R3
x×R3

v), (4.15)

and this concludes the proof of the regularity result.

Remark 4.1. It is clear that any improvement of the regularity will
have to deal with a detailed functional analysis of Q(f). This will be done
in [Ale2].
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